

forAM® AI-HS1 20-63 GA

Aluminium alloy powder for Additive Manufacturing

forAM AI-HS1 GA is a novel precipitation hardening Al alloy specifically developed for LPBF process. Gas atomized powder has good flowability and spreadability. It is a medium to high strength aluminium alloy that can be direct aged after printing to achieve high strength and hardness. The ageing treatment provides dimensional stability that also allows a high operating temperature.

Equivalent materials:

>> No directly comparable materials

For more information on forAM product line and other of Höganäs products, please contact your local sales representative.

Powder properties

Chemical composition, (typical values)				
Element	Content, %			
Al	Balance			
Mn	4.8			
Cr	0.8			
Zr	0.8			

Typical powder properties				
Nominal particle range	20-63 µm (max 5% over and under size)	MPIF05, ASTM B214, ISO4497		
Carney flow	15 s/50 g	MPIF03, ASTM B964, ISO4490		
Apparent density	1.40 g/cm ³	MPIF04, ASTM B212, ISO3923/1		
Tap density	1.76 g/cm ³	ISO 3953		

Mechanical properties

Surface condition is machined					
Heat treatment	As-printed ⁽¹⁾	Stress relieved (2)	Direct aged (3)		
Printed in Z-direction – Build direction					
UTS (MPa)	310	310	440		
YS (MPa)	250	230	340		
Elongation (%)	25	22	7		

Heat treatment	As-printed ⁽¹⁾	Stress relieved (2)	Direct aged (3)		
Printed in X/Y-direction – Perpendicular					
UTS (MPa)	310	310	450		
YS (MPa)	250	240	360		
Elongation (%)	25	21	10		
Hardness (HV10)	103	108	135		

- (1) All tensile test bars are machined from cylindrical printed bars
- (2) Stress relieved at 300°C for 3h in air
- (3) Direct aged by Ageing at 350 °C for 24 h in air

As-polished

Etched - Stress relieved condition

Etched - As-printed condition

Etched - Peak hardened condition

Etching in Flicks reagent 100 ml H₂O+1 ml HF

Standard packaging:

10 kg, 10L PE drum filled with Ar protective gas (Other tailored particle sizes and packaging are available under conditions)